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ABSTRACT: Traditionally, the Lustre file system has relied on 
the ldiskfs file system with reliable RAID (Redundant Array of 
Independent Disks) storage underneath.  As of Lustre 2.4, ZFS was 
added as a backend file system, with built-in software RAID, thereby 
removing the need of expensive RAID controllers.  ZFS was designed 
to work with JBOD (Just a Bunch Of Disks) storage enclosures under 
the Solaris Operating System, which provided a rich device 
management system.  Long time users of the Lustre file system have 
relied on the RAID controllers to provide metrics and enclosure 
monitoring and management services, with rich APIs and command 
line interfaces.  This paper will study a hybrid approach using an 
advanced full featured RAID enclosure which is presented to the host 
as a JBOD, This RBOD (RAIDed Bunch Of Disks) allows ZFS to do 
the RAID protection and error correction, while the RAID controller 
handles management of the disks and monitors the enclosure.  It was 
hoped that the value of the RAID controller features would offset the 
additional cost, and that performance would not suffer in this mode. 
The test results revealed that the hybrid RBOD approach did suffer 
reduced performance.  

KEYWORDS: Lustre, ZFS, RAID, monitoring, JBOD, RBOD, 
metrics 

INTRODUCTION  
Prior to Lustre 2.4, Lawrence Livermore National 

Laboratory (LLNL) operated numerous Lustre file system 
clusters with ldiskfs as the backend file system.  Ldiskfs is 
based off of ext3, a journaled file system, and was the default 
file system for most Linux distributions.  The ext3 file system 
dates back to the early 1990s and was originally a desktop file 
system.  Ldiskfs, when used on the Lustre MetaData Server 
(MDS), would encur long file system check (fsck) times when 
problems arose.  This led to the exploration of ZFS as an 
alternate backend file system for Lustre.  ZFS, developed by 
Sun Microsystems, was designed to have an online consistency 
check (scrub) along with many other features that would be 
useful as a backend file system for Lustre.  ZFS has been 
ported to Linux, and was integrated as a backend file system 
for Lustre 2.4 and beyond.  Much of this work was performed 
by software developers at LLNL, and the ZFS on linux project 
can be found at http://zfsonlinux.org/. 

Lustre has historically depended on reliable hardware, and 
the most commonly used method of protection has been to use 

advanced, high-speed RAID controllers to provide redundancy 
beneath the backend file systems.  ZFS was designed with 
RAID style protection integrated into the file system from the 
beginning, and therefore prefers to manage drives directly.  If 
ZFS manages the storage directly, it can detect and repair 
inconsistencies.  When LLNL first started using ZFS with 
Lustre, ZFS was layered on top of RAID controllers to mitigate 
risk.  LLNL had grown used to the RAID controllers managing 
hard drives and disk enclosures, and there was concern that 
using a JBOD approach with ZFS we would be failing drives 
over aggressively and that we would not be able to detect and 
troubleshoot problems as they arose.  Our preferred path 
forward was to allow ZFS to do the RAID, and not rely on 
RAID controllers for data protection. 

Over the past decade LLNL has developed a sizeable 
infrastructure for monitoring our numerous Lustre file systems’ 
underlying hardware, and utilized the APIs and command line 
interfaces provided by advanced RAID controllers to profile 
the I/O traffic.  For example, RAID controllers keep track of 
SCSI sense codes, key errors, individual disk drive read and 
write times, fan speeds, cache performance, I/O request sizes, 
queue depth, etc. Moving to a pure JBOD solution with ZFS 
would require all new methods of gathering this data.  Many 
development hours would need to be spent developing tools to 
manage the systems, and new procedures would have to be 
written to change the way LLNL operates their multiple Lustre 
file systems. This paper proposes a hybrid approach that would 
allow ZFS to manage the RAID portion and consistency 
checking, while continuing to use the RAID controller for 
metric gathering and monitoring. 

A HYBRID APPROACH 
Imagine if you could keep the RAID controller, but rather 

than a typical 8+2 RAID6 layout of the drives, you presented 
each drive as its own single disk in either a passthrough mode 
or as a single drive RAID0.  LLNL currently uses NetApp 
E5460 RAID enclosures.  The E5460 is a 4U enclosure with 60 
3TB nearline SAS drives.  There are two RAID controllers 
with a shared cache and four QDR Infiniband ports on the 
back, which we have connected to two Lustre OSS nodes.  The 
current configuration in production creates six 8+2 RAID6 
volumes on the NetApp array.  Three of the volumes are 
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presented to each host, which are used to create a zpool. The 
hosts are then configured as a Lustre OSS high availability 
(HA) failover pair.  A hybrid configuration would present sixty 
individual drives as single drive RAID0 (striping) volumes, 
which will then be used to create the zpool using 10 drives via 
RAIDZ2, providing equivalent protection compared to RAID6.  
The RAID controller would still be able to monitor the drives, 
providing hueristics and performance data, while ZFS would 
just see a large number of disk devices.  Figure 1 below depicts 
the difference between LLNL’s current ZFS configuration and 
a potential hybrid apporach.   

 
Figure 1. Current LLNL Production Model on the left, 
Hybrid Model on the right. 

 
In the ZFS+RAID6 configuration, each host sees three 

72TB volumes (LUNS), which are then striped with ZFS.  ZFS 
will be able to detect if there is any data corruption in the pool, 
but due to the nature of striping, ZFS cannot correct any data 
errors.  That job is left to the NetApp RAID array.   However 
in the ZFS+RAIDZ2 configuration, the NetApp is just doing 
striping and ZFS now controls the double parity RAID, 
meaning it can fix any problems, and rebuild failed drives. 

TEST CONFIGURATIONS 
To compare the performance and operational management 

of RBOD vs. JBOD, two different configurations were used. 
The testing was performed in the Hyperion testbed at LLNL 
using three NetApp E5500 units with dual enclosures and 120 
3TB disk drives of identical make and model.  The hosts and 
NetApp systems used configuration tunings consistent with 
LLNL production systems. Configuration 1, LLNL Production 
Model,  builds on what LLNL runs in production, using the 
high performance RAID controller in the E5500 disk 
enclosure. With 120 drives, twelve 8+2 RAID6 LUNs were 
created, with six LUNs fronted to each host. ZFS is then used 
to create a single vdev, striping over the LUNs in a RAID0 
fashion.   In this configuration, ZFS can detect data 
miscompares, but cannot fix any problems.  The RAID 
controller in the NetApp is relied up for data integrity. Figure 2 

below depicts Configuration 1, modeled after LLNL 
Production systems.   

 
Figure 2. Configuration 1, LLNL Production Model 

 
Configuration 2, ZFS Data Protection, is designed to allow 

ZFS to not only detect mismatched data, but also to correct any 
data miscompares.  Rather than create RAID6 volumes on the 
NetApp array, 120 single drive RAID0 volumes were created 
to present the appearance of a JBOD to the hosts. From the 
host perspective, this looked like 120 single disk drives.  These 
drives were then arranged into zpools creating six vdevs per 
host, comprised of ten-drive RAIDZ2 virtual devices (vdevs).  
In this configuration, the NetApp RAID controller was not 
doing any amount of integrity checking, but it would manage 
the health status of the drive, and continue to monitor for 
errors.  ZFS would be handling the RAID aspect for the 
devices and provide data integrity.  Configuration 2 is shown in 
Figure 3 below.  
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Figure 3. Configuration 2, ZFS Data Protection 

 

Configuration 2, the ZFS Data Protection model was also 
tested without the RAID controller, using the same enclosures 
as JBOD storage.  The host was connected with SAS adapters 
rather than Infiniband adapters. 

TEST APPROACH 
ZFS is a complicated file system with a large number of 

features and enchancements that increase the difficulty of 
running benchmarks.  Many benchmarks are designed to pre-
create a set number of files, and then run a variety of read and 
write operations upon those files.  This is often useful to see 
how fast your hardware can go, but is typically not 
representative of a real user-driven workload.  In addition, ZFS 
has some intelligence built in where it tries to understand and 
adapt to a workload and improve I/O by grouping transactions 
into groups.  ZFS will examine the list of transactions within a 
group and if there are multiple write operations to the same file 
region, it will throw out the unneeded writes and just do the 
last transaction.  In this instance, your benchmark may say it 

wrote 2GB to the file, but in fact only 1GB was sent to the 
storage devices due to writes hitting the same regions of the 
file.  Also, due to the copy-on-write nature of ZFS, the random 
I/O write tests come out similar to the sequential I/O write 
tests.  On the read side, ZFS has a rather advanced cache, a 
varient of the ARC (Adaptive Replacement Cache) algorithm.  
This uses RAM for level 1 caching and can use SSDs for a 
level 2 cache.  Because the ARC aids write performance 
disabling it for benchmarking was not considered a reasonable 
option. One can see that it is difficult to find ways to defeat the 
intelligence of ZFS.  For this testing two approaches were 
chosen.  The main interest was to test a realistic user workload, 
in order to simulate what users may expect to get from their 
applications.  Before that testing could be done, the limits of 
the hardware and the ZFS software on top of it needed to be 
understood.   

The first set of tests run used XDD, reading and writing to 
10 files through the posix layer of ZFS.  The command used 
for the write test is: 

/usr/bin/xdd -targets <DEV_LIST> -op write -
blocksize 4096 -reqsize 2048 -runtime 60 -numreqs 
1000000 -queuedepth 16 -seek range 13771092032 -seek 
random  -output ./all-ran-write-2048-4096 

and for the reads: 
/usr/bin/xdd -targets <DEV_LIST> -op read -

blocksize 4096 -reqsize 2048 -runtime 60 -numreqs 
1000000 -queuedepth 16 -seek range 13771092032 -seek 
random  -output ./all-ran-write-2048-4096 

This is a straighforward test using an 8MB buffersize to see 
how fast the file system can write and read with a sequential 
I/O pattern. 

 The second set of tests run used FIO to test the usefulness 
of the ZFS cache, and how well it can improve application 
performance.  This test used the following configuration 
parameters: 
bssplit=2m/100 
rw=randrw 
rwmixread=50 
direct=0 
size=64g 
nrfiles=16 
ioengine=posixaio 
fallocate=none 
random_distribution=zipf:1.2 
iodepth=32 
runtime=600 
 
 This job mix uses a 2MB I/O size for a 50/50 mixed 
workload of reads and writes.  The I/O used 16 files that were 
each 4GB in size, totalling 64GB, which is the size of RAM on 
the nodes.  The important parameter in this test which shows 
the benefits of the ZFS ARC is the random_distribution 
parameter.  The zipf:1.2 uses the zipf power distribution to 
restrict the I/O to a small portion of the files.  In this instance 
approximately 95% of the I/O will happen in only 4GB out of 
the 64GB.  This is intended to reflect hot data, and commonly 
accessed regions of files.  In this instance we expect ZFS to 
keep a majority of the data in RAM for the reads, and to 
discard a large number of I/O transactions that hit the same 
region of the file. 
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 As stated before, the prior two tests were meant to show the 
capabilities of the hardware and software, but do not reflect a 
real user workload.  With ZFS as the backend file system for 
Lustre, we do see a mixed workload of reads and writes, but 
we typically do not see the case of users rewriting over existing 
files.  The two main classes of our user jobs are simulation and 
analytics.  In the simulation case, users will read an initial input 
deck and periodically write out a set of restart checkpoints, or 
results data.  This I/O is always written to new files, and it is 
rare that files are read and overwritten.  For data analytics, the 
users typically have a starting set of data that their application 
reads in, and after processing some of the data, a reduced set of 
data is written to new files.  Again there is very little rewrite 
happening.  The FIO benchmark was used to simulate this type 
of behavior, but with a different workload meant to simulate 
what users may actually be doing on the system. 

 Designing a workload that simulates user behavior requires 
knowing what the users are doing.  LLNL uses the RobinHood 
package developed by CEA.  RobinHood processes the 
changelogs on a Lustre file system and stores that information 
in a database allowing for fast simple queries of file systems 
characteristics. Using RobinHood, a histogram of our file sizes 
was generated, showing that 90% of the users’ files were 
smaller than 32KB.  The average file size, looking simply at 
space used divided by total number of files, was approximately 
4MB.  This indicates that there are a very small number of 
large files, and a large number of small files.  This information 
facilitated the creation of an input file for FIO that could 
simulate a large number of small files with a  random 
workload.  The job file was comprised with four write oriented 
jobs, and two read oriented jobs.  This also appeared to fit with 
observed behavoir by watching the output from ltop, an 
application packaged with the LMT (Lustre Monitoring Tool).  
The six jobs would run in parallel based on the following input 
file: 
[global] 
description=Emulation of User Workloads 
direct=0 
ioengine=posixaio 
fallocate=none 
iodepth=32 
create_on_open=1 
 
# 256K BS, Write, 10000*2m = 20GB 
[userLoad1] 
directory=/mnt/testfs/1 
bssplit=256k/100 
rw=write 
filesize=2m 
nrfiles=10000 
size=10000m 
 
# 1M BS, Read, 10000*3m = 30GB 
[userLoad2] 
directory=/mnt/testfs/2 
bssplit=1m/100 
rw=read 
nrfiles=10000 
filesize=3m 
create_on_open=0 
size=10000m 
 
# 8K BS, Write, 100000*32k = 3.2GB 
[userLoad3] 

directory=/mnt/testfs/3 
bssplit=8k/100 
rw=write 
filesize=32k 
nrfiles=100000 
 
# 16K BS, Write, 100000*64k = 6.4GB 
[userLoad4] 
directory=/mnt/testfs/4 
bssplit=16k/100 
filesize=64k 
nrfiles=100000 
rw=write 
 
# 32K BS, Read, 100000*64k = 6.4GB 
[userLoad5] 
directory=/mnt/testfs/5 
bssplit=32k/100 
filesize=64k 
nrfiles=100000 
rw=read 
create_on_open=0 
 
# 1M BS, RandWrite, 10000*2m = 20GB 
[userLoad6] 
directory=/mnt/testfs/6 
bssplit=1m/100 
filesize=2m 
rw=randwrite 
nrfiles=10000 
size=10000m 
 

 The global section specifies that we do not want to use 
directio and fallocate, which are not supported for ZFS, and to 
use the posixaio engine for the testing.  We also want an I/O 
queue depth of 32 and when doing the writes, we should create 
them upon open.  Real user applications are not often 
overwriting existing files, rather they create the file upon 
opening for writes.  For the read tests we have to precreate the 
files such that there is something to read from.  The six parallel 
jobs are as such: 

1. Create 10,000 2MB files writing with a 256KB 
blocksize, but only write 10GB worth of data. 

2. Read a total of 10GB of data from 10,000 3MB files 
(30GB) using a blocksize of 1MB. 

3. Create 100,000 32KB files using an 8KB blocksize. 

4. Create 100,000 64KB files using a 16KB blocksize. 

5. Read 100,000 64KB files using a blocksize of 32KB. 

6. Create 10,000 2MB files using a 1MB blocksize, but 
only write 10GB worth of data.  Uses the random 
write FIO algorithm. 

This set of jobs should defeat the ZFS cache and present a 
fairly realistic mix of workloads to provide a fair comparison 
of the different hardware configurations. 

TESTING RESULTS 
The first set of tests run were the XDD tests which can be 

seen in Figure 4.    All three configurations did relatively well 
in the write case, with the JBOD mode being the slowest.  The 
RAID controller has a significant amount of write cache in the 
controller, so as writes occur, the RAID controller can 
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acknowledge the operation as soon as it hits the cache, whereas 
in the JBOD case, the host will wait until all 10 drives have 
completed their I/O before acknowledging the write.  The 
RAID controller yields a 30% performance improvement over 
the JBOD case for the XDD writes.  However the opposite is 
true for the read case. The JBOD mode is slightly faster than 
the RAID6 mode, but significantly faster than the RBOD 120 
LUN mode. In this case the RAID controller is getting in the 
way because it has a fixed sector size for the RAID volumes, 
even for RAID0.  

 

 
Figure 4.  XDD Results 

 
The RAID controller is doing more work to read the data than 
just accessing the disks directly through the JBOD mode.  The 
variance in read performance in the three RAID modes is due 
to the number of top level vdevs in play.  The fewer top level 
vdevs you have, the less taxing it is on the queue depth of the 
RAID controller.  It is possible that tuning the queue depths for 
each case may improve the results, but the hero numbers were 
not our focus so that exercise was left as potential future work. 

The results of the initial FIO workload show how useful the 
ZFS cache can be to application performance.  The graph 
shown in Figure 5 dipicts what happens as the cache warms up. 

 

 
Figure 5. Warming the ZFS cache 

 
This workload yields 5-6 GB/s combined read and writes, but 
as you run the same job repeatedly on the same files, the cache 
comes into play and throughput of 15-16GB/s can be achieved. 

 One of the nice things about using FIO to run multiple jobs 
in parallel, is that it provides detailed information about each 
job.  This includes bandwidth, runtime, and latency statistics.  
When designing the mixed workload to simulate what user 
applications may be doing, it was helpful to iterate over a 
number of different job mixes, and look at the individual 
results.  Figures 6 and 7 show the per job results for a single 
node, depicting the runtime and bandwidth of each of the six 
jobs. 

 
Figure 6. Job Runtimes 

 

 
Figure 7. Job Bandwidths 

 
As expected, the jobs with the larger block sizes (256KB 

and 1MB) completed faster with better bandwidth, while the 
smaller block size jobs took longer to complete due to smaller 
bandwidth.  Spinning hard drives have a limited amount of I/O 
operations per second, so the smaller I/O block sizes reduce the 
apparent bandwidth capabilities of the controller.  A file 
system that is capable of 80GB/s may only yield 2GB/s when 
user applications read and write with small buffer sizes.  ZFS 
attempts to mitigate this by grouping smaller I/O into larger 
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streaming I/O, but it is currently limited to 128KB transactions, 
which will be split up into 16KB I/Os to the individual drives 
in a RAIDZ2 configuration.  A large block patch is ready for 
testing in the latest branch of ZFS, but was not available during 
this testing.  Had it been ready, we suspect performance gains 
would have been realized in all configurations, thereby 
inflating the numbers but not producing a significant difference 
in the results.  In addition, due to the large amount of data 
being written, the ZFS cache was not able to warm up and 
come into play.  Running this workload multiple times did not 
yield better performance. 

Comparing the results of the FIO mixed workload amongst 
the three configurations revealed some interesting results as 
seen in Figure 8. 

 

 
Figure 8 FIO Mixed Workload. 

 
The LLNL Production Model is 20% faster on writes, similar 
to before, and almost double the speed on reads.  The NetApp 
RAID controller has optimized RAID engines and the 
advantage of the write cache.  For each block, when ZFS is 
managing the RAID calculations, it sends ten I/Os to the disks, 
whereas in the LLNL Production RAID6 mode, the host sends 
one I/O to the RAID controller, which splits up the data for the 
ten drives involved.  Since the RAID controller can 
acknowledge the I/O once it hits cache, the host can send much 
more data down the pipe to the enclosure.  The ZFS Data 
Protection model is also very sensitive to the drive path 
configuration.  Each disk has two channels coming out of it, 
and the RAID controller has multiple I/O controllers to 
maximize disk bandwith.  If the drives are not layed out 
properly, you can oversubscribe some channels, and not utilize 
others.  With the RAID controller, you have full control over 
which paths are assigned to drives and controllers.  In the ZFS 
JBOD case, you lose that control and it is likely you may not 
be utilizing the drive channels properly.  This will certainly 
affect maximum performance of the system. 

 

ANALYSIS 
This study was undertaken because of the belief that the 

hybrid solution would be viable.  RAID controllers add 
approximately 10% to the cost of the system when all other 
parts are the same.  That is a pretty good value, considering the 
benefits gained: 

• Metrics – drive and channel heuristics, 
performance counters, drive latencies, etc. 

• Monitoring – enclosure services, predictive failure 
analysis, rich API, battery status, event logs, etc. 

• Firmware – vendors work closely with drive 
manufacturers 

• Fine tuning of I/O paths 

Being able to keep the RAID controllers and let ZFS handle the 
RAID seems like the best of both worlds, until you examine 
the performance numbers.  Since you have now paid the cost of 
the RAID controller to reap the benefits, you may as well use it 
for what it was designed for, and run the enclosure in RAID6 
mode.  True, ZFS cannot fix problems, but then again, you are 
relying on the RAID controller to do the job for you.  You still 
get all of the benefits of ZFS, such as compression, online 
consitency checking, snapshots, etc.  Further research could be 
done to see if it is possible to tune the JBOD mode to improve 
the performance and bring it equal to the RAID6 mode.  
Testing at the Lustre layer may also level the playing field. 

SUMMARY 
LLNL decided to layer ZFS on top of RAID controllers as a 
risk mitigation strategy when adopting ZFS as the backend file 
system for Lustre.  The intent was to eventually move toward a 
JBOD style enclosure and save money by not having to 
purchase RAID controllers.  Historically, the RAID controllers 
were a significant cost component of the storage architecture, 
and ZFS was seen as an alternative that would save money.  In 
addition, because ZFS stores the checksum for the data block 
elsewhere on the drive, the RAID implementation appears to 
be a superior solution to most hardware RAID controllers. 
However, the question of how to manage drives and enclosures 
in a JBOD without relying on RAID controllers remained.  As 
the price of RAID controllers dropped over time, a hybrid 
solution appeared to be an excellent path forward, but the 
performance of the RBOD mode is lower than expected.  
Considering that the RAID6 mode performs best, and the 
RAID controller provides the enclosure management features 
desired, the risk mitigation strategy of ZFS atop RAID 
controllers made three years ago continues to be a good 
decision, and is likely to be our path forward for the forseeable 
future.  Given resources and time, it would be interesting to see 
if it is possible to tune the system to improve the ZFS Data 
Protection Model in a way that improves the performance 
above the LLNL Production Model, but that is outside the 
scope of this paper.  

 


